no image
용어집
2024.12.10
mask 2 polygon
def convert_mask_to_polygon(mask): contours = None if int(cv2.__version__.split('.')[0]) > 3: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0] else: contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1] contours = max(contours, key=lambda arr: arr.size) if contours.shape.count(1): contours = np.squeeze(contours) if contours.size 3 ..
2024.08.02
no image
Depth Anything 리뷰
DPT + DINOv2Depth Anything$$labeld_data :: D^l {(x_i, d_i)}^M_{i=1}$$$$unlabeld_data :: D^u = {u_i}^N_{i=1}$$$D^l$ 로부터 teacher model $T$를 학습하고$T$모델을 통해 pesudo depth labels를 $D^u$ 에 할당함Finally, 우리는 student model $S$ 를 labeled set과 pesudo labeled set으로 학습함3.1 Learning Labeled Images이 process는 MiDaS 학습방식과 유사함첫번 째로 depth value를 $d = {1}/{t}$ 로 변환하고 각 depth map을 0~1 사이로 변환함multi-dataset joint trainin..
2024.03.19
no image
Yolo v1 paper architecture
Yolo v1 paper review Output → 7 x 7 x 30인 이유는 $$ grid * grid * {(x,y,w,h ,c)* bbox_{candidate} + class_{size}} $$ Localization Loss $$ \lambda_{coord} \sum_{i=0}^{S^2}\sum_{j=0}^{B} \mathbb{1}_{ij}^{obj}[(x_i - \hat{x}_i )^2 + (y_i - \hat{y_i})^2] \ \qquad \qquad \qquad \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B}\mathbb{1}_{ij}^{obj}[(\sqrt w_i- \sqrt {\hat{w_i}})^2 + (\sqrt h_i - \sqrt {\ha..
2023.04.16